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Abstract 

This study presents an innovative approach for automated 

pavement degradation monitoring in Cameroon, specifically 

focusing on the city of Yaoundé. We integrate drone 

photogrammetry for high-resolution images with artificial 

intelligence, leveraging a YOLOv11 model for precise 

detection and segmentation of various road surface 

degradations. A comprehensive Python workflow was 

developed to automate the entire processing chain, from 

orthomosaic tiling and AI model inference to georeferencing 

predictions and generating GIS-ready layers. The 

methodology was applied to a 2.5 km road section (Elig-Effa–

Melen– Carrefour EMIA) in Yaoundé. The trained model 

achieved a F1-score of 77% with a precision of 86% and recall 

of 70% for the detection and F1-score of 81% with a precision 

of 86% and recall of 78% for the segmentation. The automated 

workflow processed the road section in 5 minutes 47 seconds, 

detecting 438 instances of degradation with a total affected 

surface area of 662.96 m², demonstrating significant time 

savings compared to days or weeks required for manual 

inspection. The generated degradation maps and an interactive 

dashboard provide objective, actionable insights for road 

managers, enabling proactive maintenance planning and 

optimized resource allocation. While acknowledging 

limitations such as the need for further validation with field 

surveys and the current focus on 2D surface data, this research 

highlights the scalability and cost-effectiveness of the 

proposed solution. It offers a promising pathway toward 

intelligent and efficient road network management in 

developing countries, by providing timely and accurate data 

to support data-driven maintenance strategies. 

Keywords: Photogrammetry, Drone, Artificial Intelligence, 

Paved Roads, Degradations, YOLOv11. 

1. Introduction 

Road infrastructure is a cornerstone of economic development 

and social connectivity, particularly in developing countries. 

In Cameroon, the road network spans over 121,873 km as of 

2024, yet only about 8.4% of these roads are paved (Woof M. 

J., 2025). This vital network faces continuous deterioration 

due to increasing traffic loads, demanding tropical climates, 

and natural aging of materials. The progressive degradation of 

road surfaces—manifesting as cracks, potholes, rutting, and 

other distresses—threatens infrastructure durability and user 

safety, with severe economic and social consequences if left 

unaddressed. Traditionally, road condition assessment in 
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Cameroon and elsewhere has relied on labor-intensive visual 

inspections or on specialized survey vehicles equipped with 

cameras, laser scanners, or other sensors. While such methods 

provide valuable data, they are often costly, time-consuming, 

subjective, and limited in spatial coverage (Tan and Li, 2019). 

Manual surveys are difficult to replicate consistently across 

large urban areas, and their infrequent periodicity, constrained 

by limited resources, impedes timely maintenance. In cities 

like Yaoundé, where the road network extends hundreds of 

kilometers, traditional approaches have become insufficient 

for regular, standardized, data-driven maintenance planning. 

In this context, a promising alternative emerges: the 

combination of unmanned aerial vehicles (UAVs or drones) 

for photogrammetry and modern deep learning-based artificial 

intelligence (AI). Drones have proven to be versatile tools for 

infrastructure inspection, offering substantial advantages in 

speed, safety, and coverage. Equipped with high-resolution 

cameras, UAVs can capture detailed aerial imagery of road 

surfaces from various angles and altitudes, enabling 

comprehensive mapping of pavement conditions through 

photogrammetry. When coupled with AI, this approach allows 

for faster, more precise, and systematic pavement inspections 

than traditional methods. High-resolution orthoimages 

derived from drone flights can be processed with computer 

vision models to automatically detect and quantify road 

distresses, providing objective assessments in a fraction of the 

time required by manual surveys. 

Recent studies worldwide have explored the integration of 

drone imagery and AI for automated road damage detection. 

In Spain, Silva et al. (2023) demonstrated the effectiveness of 

deep learning models (YOLO family) in identifying cracks 

and potholes from UAV images. Their work achieved up to 

73% mAP (mean Average Precision) at 0.5 IoU using 

YOLOv7, highlighting the potential of UAV-based surveys 

for road condition monitoring. However, the authors noted 

challenges regarding model generalizability: models trained 

on one region or lighting condition often underperform when 

applied to different environments. This underscores the need 

for context-specific datasets and locally tailored training, as 

variations in pavement materials and environmental 

conditions can significantly affect detection performance. In 

another study, Tan and Li (2019) in China used UAV 

photogrammetry to reconstruct 3D road models and detect 

pavement distress. Their method achieved high precision, 

with discrepancies of around 1 cm in distress depth 

measurement compared to field surveys, demonstrating that 

drone-based surveys can meet engineering accuracy 

requirements for road defect characterization. 

In Cameroon, pioneering research has begun to apply drone 

photogrammetry to road monitoring. Nguimbock (2020), for 

example, conducted one of the first local studies using drone 

images to map pavement degradations on a Yaoundé roadway. 

That study involved manually digitizing road defects (cracks 

and potholes) on high-resolution orthomosaics and comparing 

the results to field measurements. The findings showed a 

strong correlation between drone-derived measurements and 

ground truth, with an average area deviation of only 0.07 m² 

between GNSS-measured and photo-derived defect areas. 

This confirmed the reliability of drone orthomosaics (when 

properly georeferenced with ground control points) for 

capturing the extent of road surface damage. However, 

Nguimbock’s approach did not incorporate machine learning 

for automation; the identification of defects was essentially 

manual and focused on the pavement surface layer alone. The 

literature thus highlights two critical gaps that our work aims 

to address: (1) the lack of an integrated, automated workflow 

that can process drone imagery end-to-end for road defect 

detection (from image acquisition to GIS mapping), and (2) 

the need to consider the road infrastructure holistically as a 

system (including not just the pavement lanes, but also related 

features like sidewalks, shoulders, and drainage elements). By 

building upon these prior studies, our research seeks to 

develop a scalable UAV+AI based monitoring system tailored 

to the context of Yaoundé, and to demonstrate how such a 

system can improve upon traditional road maintenance 

practices through more frequent, accurate, and cost-effective 

assessments 

2. Methodology 

Our methodology integrates UAV-based photogrammetry, 

deep learning segmentation, and GIS-based post-processing to 

detect and map degradations on paved roads. The overall 

approach consists of four main steps: (i)data acquisition via 

drone flights, (ii) dataset preparation and AI model training, 

(iii) automated inference and georeferencing of detections, 

and (iv) integration of results into a Geographic Information 

System (GIS) for analysis and visualization. Our approach is 

based on the following diagram: 

 

Figure 1 : Processing approach 

2.1 Study area 

The case study is conducted in Yaoundé, Cameroon’s capital, 

which provides a representative urban environment with 

diverse road conditions and common degradation types. 

Within Yaoundé, a specific road section known as Elig-Effa–

Melen–Emia (approximately 2.5 km long) (Figure 2), was 

selected for detailed analysis. This section was chosen due to 

its varied pavement conditions and observable distresses, 

making it an ideal testbed for the proposed monitoring system. 
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The selected road segment traverses residential and 

commercial districts, thus experiencing significant traffic. 

Prior to data collection, necessary flight authorizations were 

obtained from the Cameroon Civil Aviation Authority, and 

survey operations were coordinated to ensure safety and 

compliance with local regulations. 

 

Figure 2 : Elig-Effa-Melen-Emia Road section  

2.2 Data acquisition  

Aerial data were acquired using a DJI Mavic 3 Enterprise 

(M3E) drone (Figure 3). The M3E is a compact quadcopter 

equipped with an RTK (Real-Time Kinematic) module for 

centimeter-level geolocation accuracy of images. It carries an 

integrated 20 MP wide-angle camera (4/3″ CMOS sensor) 

capable of high-resolution capture even in lower light 

conditions. We planned flight missions to achieve a ground 

sampling distance (GSD) of 2-3 cm/pixel on the ground, 

which is sufficient to resolve fine pavement details such as 

small cracks. The drone was flown at an altitude and overlap 

configuration optimized for photogrammetry: typically, 80% 

forward overlap and 70% side overlap between images, 

ensuring robust 3D reconstruction and full coverage of the 

road surface. 

 

 

To enhance absolute positioning accuracy of the orthomosaic, 

we placed Ground Control Points (GCPs) on and around the 

road prior to flying. These GCPs were marked on the 

pavement (painted targets at easily identifiable locations) and 

precisely surveyed with dual-frequency GNSS receivers in 

Network RTK mode (Figure 4).  

An average horizontal accuracy of ±1 cm and vertical 

accuracy of ±2 cm was achieved for the GCP coordinates. The 

spatial arrangement of GCPs covered the extremities and key 

points along the road section to support an accurate 

georeferencing of the photogrammetric models. The data 

acquisition campaign took place over a one-month period, 

accounting for suitable weather windows and coordinating 

around traffic to minimize disruptions. 

 

 

2.3 Photogrammetric processing 

All collected images were processed using Pix4Dmapper to 

generate the high-resolution orthomosaics of several roads in 

Yaoundé. In Pix4D, a new project was created for each road 

subsection flight, using the WGS84-UTM Zone 32N 

coordinate system (EPSG:32632) appropriate for Yaoundé. 

We incorporated the local vertical datum (EGM2008 geoid 

model) to convert elevations to orthometric heights consistent 

with local surveying practice. For each road section, the 

processing workflow included: (1) Aerial triangulation, (2) 

Dense point cloud generation, (3) Digital Surface Model 

(DSM) and Orthomosaic. Figure 5 shows an extract of the 

generated orthomosaics.   

Figure 3 : DJI Mavic 3 Enterprise 

Figure 4: GCP surveying 
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Figure 5 : An extract of the orthomosaics dataset 

2.4 Dataset preparation and annotation 

From the orthomosaics acquired from various road sections in 

Yaoundé, we generated a dataset of image jpeg tiles for use in 

training the AI model. The orthomosaics were divided into 

smaller patches (640×640 pixels), which is a convenient size 

for modern deep learning frameworks and avoids memory 

issues when processing high-resolution images. We extracted 

around 1000 image tiles and each tile was labeled for the 

presence of road surface degradations. Four damage classes 

were used as shown in Table 1:  

Table 1 : Selected degradation classes 

Class C1 C2 C3 C4 

Degradation Cracks Potholes 
Raveling/str

ipping 

Edge 

failures 

 

Using a combination of manual annotation and semi-

automated tools based on SAM (Segment Anything Model), 

we marked instances of these defects on the images. 

Annotation was performed with the aid of the Roboflow 

platform, which allowed labeling each defect with a polygon 

(mask) or bounding box and an associated class label (Figure 

6). To increase the robustness of the model, we applied data 

augmentation techniques on the training images: rotations, 

flips, brightness/contrast adjustments, and scaling were used 

to synthetically vary the dataset. This helps the model 

generalize better to different orientations and lighting 

conditions of defects. The prepared dataset was then split into 

training, validation, and test sets (approximately 70% for 

training, 20% validation, 10% testing) ensuring that images 

from the same area did not leak into multiple sets. 

 

Figure 6 : An extract of the annotated dataset 

2.5 YOLOv11 model development 

We employed a custom variant in the YOLO (You Only Look 

Once) family of object detectors, referred to here as 

YOLOv11, for pavement damage detection and segmentation. 

The YOLO architecture is known for its efficiency in real-time 

object detection, using a single neural network to predict 

bounding boxes and class probabilities in one evaluation. Our 

version extends this concept by also predicting segmentation 

masks for each detected object, effectively performing 

instance segmentation of road defects. The model training was 

carried out on the Google Colab cloud infrastructure, 

leveraging an NVIDIA Tesla T4 GPU with 16 GB of video 

memory (VRAM), 12 GB of RAM, and 112 GB of storage. 

The training process was configured with a set of carefully 

selected hyperparameters to ensure robust model convergence 

and effective transfer learning. The model was trained over 

750 epochs with a batch size of 16 and an input resolution of 

640 × 640 px. Optimization used SGD with momentum 

(0.937) and an initial learning rate of 0.01 with cosine decay. 

Training was initialized with YOLOv11 pre-trained COCO 

weights.  This configuration enabled efficient execution of the 

training and optimization processes while ensuring a 

reasonable computation time for the dataset size considered.  

The performance of the model was evaluated using standard 

metrics commonly employed in object detection and instance 

segmentation tasks. These include precision (1), recall (2), and 

F1-score (3), which provide insight into the model’s accuracy 

and ability to detect true distress instances while minimizing 

false detections.  / 

Precision =  
 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
                                (1) 

Recall =  
 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
                                       (2) 

F1 − score =  2 ×
Precision×Recall

Precision+Recall
                  (3) 
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o TP: True Positives 

o FP: False Positives 

o FN: False Negatives 

Additionally, we report the mean Average Precision (mAP) at 

an Intersection-over-Union (IoU) threshold of 0.5 

(mAP@0.5), and over a range of thresholds from 0.5 to 0.95 

(mAP@[0.5:0.95]), following the COCO evaluation protocol, 

given by (3) and (4). These metrics offer a robust framework 

for assessing both the localization and classification 

performance of the model. 

mAP@0.5 =  
1

𝑁
 ×  ∑ 𝐴𝑃𝑖

𝑛
1                            (3) 

       mAP@[0.5: 0.95] =  
1

10𝑁
 × ∑ ∑ 𝐴𝑃𝑖(𝑡)0.95

𝑡=0.5
𝑁
1    (4) 

o N: number of classes (N=4 in our case) 

o t: IoU threshold  

o APi(t): average precision for class iii at threshold t 

2.6 Integrated processing workflow 

A major innovation of this study is the development of an 

integrated Python-based workflow (Figure 7) to automate the 

inference and mapping process end-to-end. This workflow 

was implemented as a sequence of modules that take the 

orthomosaic as input and output georeferenced degradation 

polygons in shapefile format for GIS analysis, without human 

intervention.  

 

Figure 7 : Python workflow 

This workflow was designed as a modular and automated 

solution, orchestrating the entire process from orthomosaics 

tiling to the generation of final GIS layers. Its architecture 

aimed to minimize human intervention and maximize 

processing fluidity. The key components of the workflow are: 

 The orthomosaic tiling module: This module 

programmatically slices the large orthomosaic into 

the same tile size that the AI model expects (640×640 

px), using a sliding window approach. Along with 

each tile, it generates a corresponding world file (a 

text file containing the georeferencing coordinates 

for that tile (.jgw)). This ensures that the pixel 

coordinates of segmentation can later be translated 

back to real-world coordinates.  

 The AI model inference module: This module 

loads the trained YOLOv11 model and runs it on 

each image tile in turn. The model outputs, for each 

tile, a set of predicted bounding boxes, segmentation 

masks, confidence scores, and class labels (C1–C4). 

We capture these predictions and initially store them 

in a JSON format (for each tile), which contains the 

pixel coordinates of the mask polygons and the class 

and confidence for each detected object. The 

automation here allows batch processing of hundreds 

of tiles rapidly, far faster than manually running a 

detector on each image patch. 

 Prediction georeferencing module: In this step, the 

local pixel coordinates of each detected polygon are 

converted to global map coordinates 

(latitude/longitude or easting/northing). Using the 

world file info for each tile and libraries such as 

GeoPandas and Shapely in Python, we transform 

each mask polygon from the tile’s coordinate space 

into the orthomosaic’s coordinate system using a 

first-order affine transformation, as defined in the 

GeoTIFF specifications (Ritter & Ruth, 1997) and 

implemented in the GDAL library, given by (5): 

{
𝑋 = 𝑠𝑐𝑎𝑙𝑒𝑥 ∙ 𝑥 +  𝑥top left

𝑌 = 𝑠𝑐𝑎𝑙𝑒𝑦 ∙ 𝑦 + 𝑦top left
                 (5) 

o x, y: pixel coordinates of the point in the tile 

o X, Y: geographic coordinates (usually in 

meters in the projected CRS) 

o scalex: pixel resolution along the X-axis  

o scaley: pixel resolution along the Y-axis  

o xtop left, ytop left : geographic coordinates of the 

top-left corner of the tile. 

 

The results for all tiles are then merged. If a defect spans 

multiple tiles (rare due to tile size and overlaps), the polygons 

can be merged or handled to avoid duplication. We output a 

georeferenced vector file (shapefile) containing all detected 

road defects, each with attributes like class, area, and 

confidence score. This module effectively bridges AI output 

with GIS input automatically. 

 Data aggregation module: Finally, the workflow 

compiles all georeferenced detections into a single 

layer and performs some summary calculations. It 

computes the total count of defects and the sum of 

their areas per class for the entire road section. 
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2.7 GIS integration 

The aggregated geospatial dataset is saved as a shapefile 

feature class, ready to be loaded into GIS software. We then 

import this layer into ArcGIS Pro for visualization and further 

spatial analysis. An interactive dashboard was also developed 

(using ArcGIS Dashboard) to visualize the results 

dynamically. The dashboard links the map of detected defects 

with charts and statistics (e.g., number of potholes, total 

cracked area, density of defects per kilometer), and allows 

filtering by defect type or road segment. This helps road 

managers interpret the data and identify priority areas. 

Overall, the methodology emphasizes reproducibility and 

automation. By using this integrated approach, once the drone 

imagery is collected and the model is trained, the entire 

workflow from raw images to actionable maps can be 

executed quickly without manual intervention at each stage. 

This is crucial for scaling up the solution to city-wide road 

networks on a regular basis. 

 

3. Results and discussions 

3.1 Model Performance 

3.1.1 Global quantitative performance metrics 

After training, the YOLOv11 model showed strong 

performance in detecting and segmenting the four defined 

classes of road degradation. Table 2 reports the global metrics 

at the end of training for detection (B, bounding boxes) and 

segmentation (M, masks). 

Table 2: Model performance metrics values 

Task Precisio

n 

Recal

l 

mAP@0.5

0 

mAP@0.50

–0.95 

Detection 

(B) 

0.86 0.70 0.75 0.48 

Segmentatio

n (M) 

0.86 0.78 0.73 0.38 

 

These values indicate a well-balanced model that favors 

relatively high recall while maintaining good precision, 

thereby limiting false positives. Class-wise precision shows 

high values for potholes and raveling, consistent with Table 3. 

 

 

 

Table 3: Class-wise model performance (precision) 

 

3.1.2 Training curves 

The analysis of the training curves (Figure 8) was essential to 

understand the model’s learning process and to identify 

potential issues such as overfitting or underfitting. The 

training losses (train/box_loss, train/seg_loss, train/cls_loss, 

train/dfl_loss) decrease rapidly and then stabilize, indicating 

proper convergence. The validation losses (val/box_loss, 

val/seg_loss, val/cls_loss, val/dfl_loss) follow the same trend 

with normal, mild fluctuations and no marked divergence 

from training. 

Regarding the metrics, precision reaches about 0.86 for both 

detection and segmentation, while recall is around 0.70 for 

detection and 0.78 for segmentation. The mAP at IoU 0.50 is 

approximately 0.75 (B) and 0.73 (M), whereas mAP@0.50–

0.95 is lower—0.48 (B) and 0.38 (M)—reflecting the 

increasing strictness of higher IoU thresholds. 

 

(A) 

 

(B) 

Class Potholes  Raveling  Cracks Spalling 

/ Edge 

failures 

Precision 

(%) 

92 80 65 67 
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Figure 8: Training loss curves (A) and metrics curves (B) 

The YOLOv11 model’s performance metrics (Table 3.2) and 

the training curves indicate a robust ability to detect and 

segment road distresses: 

 High precision (0.86): Most reported detections are 

correct. The damage mapping is reliable and limits 

false positives. This is crucial for operational 

planning, as resources will not be deployed 

unnecessarily on undamaged segments. 

 Recall—moderate for detection (0.70) and higher 

for segmentation (0.78): This indicates that some 

defects may still be missed, notably very fine cracks 

or areas with low contrast/shadows. In practice, this 

implies that targeted field checks remain relevant in 

sensitive segments, while segmentation helps 

recover part of the cases missed by detection alone. 

 mAP@0.50 (0.75 for B, 0.73 for M): These values 

are compatible with network-scale screening and 

prioritization. Conversely, mAP@0.50–0.95 

evaluates localization accuracy at stricter IoU 

thresholds: the lower scores (0.48 for B; 0.38 for M) 

suggest that fine adjustment of boxes and mask 

contours remains improvable, especially for irregular 

shapes (raveling, alligator cracking). 

Regarding the training process, the decrease followed by 

stabilization of train/val losses points to stable learning, with 

no marked overfitting. 

In summary, the combination of high precision and solid 

mAP@0.50 enables the production of actionable damage 

masks for maintenance. The main avenues for improvement 

concern recall on difficult classes and fine localization 

accuracy (mAP@0.50–0.95), which can be enhanced by 

enriching the dataset (rare classes) and refining the 

annotations. 

 

3.2 Application to the Elig-Effa-Melen-Emia Road section 

3.2.1 Detection and segmentation of road damage 

We applied the fully trained model and the automated 

workflow to the Elig-Effa–Melen–Carrefour EMIA Road 

section orthomosaic (Figure 9). The final orthomosaic had a 

GSD of 2.3 cm/px and covered the entire Elig-Effa–Melen–

Emia corridor. The Pix4D’s quality report, showed an RMSE 

(root mean square error) of 1 cm on GCPs, confirming the 

precision of the mapping. 

 

Figure 9: Elig-effa-Melen-EMIA road section orthomosaic 

The model’s output on this section provides a detailed 

inventory of detected pavement distresses. In total, the AI 

detected 438 instances of degradation along the 2.5 km 

section. These include various sizes of cracking, potholes, 

edge spalls, and areas of raveling. The detection mask 

centroids are georeferenced and mapped in Figure 10, which 

displays the spatial distribution of all defects across the 

section. Table 4 summarizes the count and total area for each 

class of defect identified on this road.  

 

Figure 10: spatial distribution of distress across the whole road 

section 

 

 

 

 

 



 

19 

 

 

Table 4: Detection statistics 

 

These figures indicate that raveling (surface material loss) and 

cracking are the most prevalent types of distress by area on 

this section, whereas potholes, though fewer in number, 

contribute significantly to the degraded area.  The total 

degraded surface area is approximately 662.96 m², which is 

the sum of all detected polygons areas. This corresponds to a 

certain percentage of the road section’s pavement area. This 

level of quantification is extremely useful for maintenance 

planning, it provides an objective measure of how much of the 

pavement needs repair, and of what type. 

Each colored polygon in Figure 11 represents a detected 

defect: cracks in blue, potholes in red, raveling in green, and 

edge failures in orange. The background is the orthomosaic. 

 

Notably, the processing efficiency of the system was very 

high. The entire inference and mapping workflow (tiling the 

orthomosaic, running the model on all tiles, georeferencing 

results, and aggregating to GIS) completed in just 5 minutes 

47 seconds on a PC with 16Go of RAM and an NVIDIA GPU 

with 8Go of VRAM, for the 2.5 km road. In contrast, a 

traditional manual road survey of the same length, even a 

simplified windshield survey, might take a field team multiple 

days to cover and record all distresses, and still would lack the 

spatial precision of our method. This highlights the enormous 

time-saving potential of the approach. Analyses that used to 

require weeks of field work and data transcription can now be 

obtained in near real-time once the aerial images are captured. 

The rapid turnaround enables more responsive maintenance – 

for example, authorities could survey an entire city’s roads in 

a few days and quickly identify emerging problem areas for 

intervention, rather than waiting for citizen complaints or 

periodic inspections. 

 

Figure 12: Detected Road damages map of the Mini-ferme road 

section 

3.2.2 Spatial analysis and visualization 

Beyond raw detection counts, we performed spatial analyses 

on the output to derive additional insights. We created damage 

density maps of the defects by calculating the centroid of each 

detected polygon and then mapping these points using each 

area field as weight. We generated the maps (Figure 13 and 

Figure 14), in which road stretches are color-coded (blue for 

low density, red for moderate, yellow for high). Figure 13 

clearly highlighted that the Mini-Ferme stretch of the road was 

the most deteriorated, corroborating observations from the 

field that this area has long-standing maintenance issues. Such 

areas stand out on a density plot and can be prioritized for 

more detailed engineering evaluation or urgent repair.  

The distress severity of road sections (6) might be evaluated 

by computing the percentage of surface area distressed in 

100 m road intervals according to guidelines from pavement 

management systems like FHWA’s Distress Identification 

Manual (2013). We can classify segments as low, medium, or 

high severity based on thresholds of area damaged.  

Severity Index (%) = (
𝐴𝑑

𝐴𝑡
) × 100                     (6) 

o Ad: Total surface area of detected distresses 

in the segment (m²), 

o  At: Total surface area of the segment (m²) 

Classes 
Cracks 

(C1) 

Pothole

s (C2) 

Ravelin

g (C3) 

Edge 

Failure

s (C4) 

Total 

Instance

s 
7 225 204 2 438 

Sum of 

Area 

(m²) 

102.23

6 
248.166 298.244 14.316 

662.96

4 

Figure 11: Example of detected road damages. 
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Figure 13: Damage density map of the whole road section 

 

Figure 14:  Damage density map Mini ferme -Melen road section 

The georeferenced outputs were also loaded into an interactive 

dashboard (GeoDashboard). This interactive dashboard 

(Figure 15) allows users to pan/zoom the map of Yaoundé and 

see all detected defects. It includes filters like show only 

potholes, or only a particular survey date if multiple surveys 

are loaded and displays summary statistics like “Total crack 

area in view” or “Number of defects by type in this 

neighborhood.” This kind of tool provides a dynamic way for 

decision-makers to query the data. After repairs are done, a 

new drone survey’s results can be compared to the previous 

one to verify that defects were properly fixed or to see if new 

ones appeared.  

 

Figure 15: GeoDashboard 

3.2.3 Validation of results 

As the Elig-effa-Melen-Carrefour EMIA section was 

rehabilitated during the study period, direct field surveys for 

validation were not feasible. Therefore, an alternative, 

scientifically justified validation strategy was adopted, based 

on comparing the results of our Python workflow with manual 

digitalization on the orthomosaic (Figure 16). This approach 

was supported by: 

 Error propagation theory: Mathematically, if a 

surface A = L × W, then differentiation gives dA = 

LdW + WdL. The error on the area ΔA thus 

propagates from errors on linear dimensions (ΔL, 

ΔW). Conversely, a small surface deviation 

necessarily implies that linear, and thus planimetric 

(X, Y), errors are even smaller. This property justifies 

the use of digitized areas as an indirect indicator of 

planimetric precision. 

 Data quality:  The orthomosaic used had a GSD of 

2.3 cm/px and an RMSE of 0.01 m. Although slightly 

lower than Nguimbock's data (GSD = 1.83 cm/px; 

RMSE = 1.01 cm), these precision levels remain 

largely sufficient for digitizing road degradations, in 

accordance with literature standards.  

 

Figure 16: Manually Digitized polygons and Python workflow 

generated polygons 

While the visual detection and manual digitalization method 

revealed more degradations (457 degradations, 19 more) than 

those automatically detected and segmented, the comparison 

primarily focused on a subset of degradations detected by both 
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methods, totaling 25 degradations. Table 6 shows that the 

surface area deviations between the two methods remained 

generally small. In most cases, the absolute deviation did not 

exceed 10 cm², and the relative deviation remained below 

3.66%. These results confirm that automated AI detection 

faithfully reproduces the surface areas of manually identified 

degradations, consistent with Nguimbock's (2020) 

observations. 

Table 2: Difference in area between AI and Manual 

digitized polygons 

Damages (ΔArea)mean(m²) 

Cracks 

 

0.06 

Raveling 0.033 

Potholes 0.035 

Edge failures 0.057 

Mean 0.046 

 

It is worth noting that the manual mapping did find 

approximately 19 very small cracks that the AI missed (hence 

457 vs 438 count). Many of these were hairline cracks at the 

limit of image resolution or in areas of heavy shadow where 

even the human mapper was uncertain. Some could be false 

positives on the human side. Nonetheless, from a maintenance 

perspective, missing a few tiny low-severity cracks is not 

critical, whereas identifying the major distresses correctly is 

more important. We are satisfied that the AI caught the vast 

majority of significant defects and that its quantification of 

those defects (areas) is reliable. 

4. Conclusion 

This study successfully validated an integrated approach 

combining drone photogrammetry and deep learning-based 

artificial intelligence for automated monitoring of paved road 

conditions in Cameroon. Focusing on a case study in 

Yaoundé, we demonstrated that high-resolution drone 

imagery, when processed through a tailored YOLOv11 model 

and automated GIS workflow, can rapidly and accurately 

detect common pavement degradations such as cracks, 

potholes, raveling, and edge failures. The approach 

transformed what is traditionally a manual, subjective process 

into a fast, objective, and reproducible one. Key achievements 

include the precise quantification of over 400 defects on a 

2.5 km road segment and the generation of detailed maps and 

statistics within minutes of data processing. These results 

underscore a significant advancement in efficiency – 

effectively turning days of fieldwork into minutes of 

automated analysis – and highlight the scalability of the 

solution for city-wide deployment.  While the outcomes are 

promising, further work is recommended to enhance and 

generalize the approach. First, integrating 3D analysis (using 

the dense point cloud or digital elevation models from drone 

data) could allow assessment of pothole depth or rut depth, 

providing a more comprehensive measure of degradation 

severity. This could involve coupling the current 2D model 

with a depth estimation module or using emerging techniques 

like volumetric change detection. Second, expanding the 

training dataset with more varied examples of road distresses 

(including those from different cities or regions) will improve 

the model’s robustness across diverse conditions. Continuous 

learning could be implemented, where the model is 

periodically retrained with new data from subsequent surveys 

to capture new types or appearances of defects.  
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